
1

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 11

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring
Michael Stal

Senior Principal Engineer
Siemens AG, Corporate Technology

Michael.Stal@siemens.com

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 22

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Content

• Motivation
• Reengineering and Refactoring
• Refactoring within a Process
• Refactoring Examples
• Refactoring: Additional Issues
• Refactoring Tools
• Conclusions
• References

2

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 33

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Motivation

After a while, many architectures
tend to look like this one ...

• The original architecture vision is
hardly visible.

• Design flaws are scaffold by many
small and local “corrections.”

• Missing parts are attached via
backpacks.

However:
Such an architecture is doomed to fail

before it goes into implementation or
operation, because it suffers from:

• developmental qualities like flexibility
and maintainability.

• operational qualities like performance
and scalability.

A Backpack
Backpack

DB
Access Layer

A
Component

A
Backpack

Someone
Else’s Comp

Yet Another
Component

Another
Component

The Fifth
Element

Component
42

Another
Backpack

Spaghetti
design

DB access
shortcut

Detached Extensions

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 44

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refinements and Refactorings

Therefore:
Create a software architecture step-wise via a number of well-defined, small

increments. Each increment includes:

• top-down refinement activities to detail and complete the software
architecture.

• bottom-up refactoring
activities to garden
and clean-up
inconsistent
or insufficient
design decisions.

The process stops
if the software
architecture is
complete and
consistent in all its
parts and details.

3

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 55

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Definitions I

At a first look, reengineering and refactoring appear
to be very similar:

• Reengineering is the examination and alteration of a system to reconstitute
it in a new form and the subsequent implementation of the new form.

• Refactoring is the process of
changing a software system
in such a way that it does not
alter the external behavior of
the code yet improves its
internal structure.

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 66

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Definitions II

A closer look reveals the differences between the two:
• Scope: Re-engineering always affects the entire system; refactoring has

typically (many) local effects.
• Process: Re-engineering follows a disassembly / reassembly approach;

refactoring is a behavior preserving, structure transforming process.
• Result: Re-engineering can

create a whole new system
—with different structure,
behavior, and functionality;
refactoring improves the
structure of an existing
system—leaving its behavior
and functionality unchanged.

4

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 77

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

When to use What?

The differences between reengineering and refactoring suggest
different application areas:

Reengineering:
• The system‘s documentation is missing or obsolete.
• The team has only limited understanding

of the system, its architecture, and implementation.
• A bug fix in one place pops up bugs

in other places.
• New system-level requirements and

functions cannot be addressed or
integrated appropriately.

Refactoring:
• The system works fine, but its design

and code can be improved.
• New local requirements and functions

cannot be addressed or integrated appropriately.

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 88

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Reengineering in Practice

Reengineering a system means to first reverse engineer this
system and then to forward engineer the new system on basis
of the reverse engineering results.

The reverse engineering part includes the following activities:
• System analysis / architecture recovery: what is the existing system?
• SWOT analysis: what are the strengths, weaknesses, opportunities and

threats of the existing system?
• Decision: what parts of the system should

be kept, modified, or thrown away?

The forward engineering process is „as usual“:
• A new architecture vision is created with

existing as well as new parts. Existing
parts might get new interfaces or new
configurations.

• The architecture vision gets refined and
refactored through assembly / refactoring
of existing parts, and creation of new parts.
Existing parts might get new internal
designs and implementations.

Reverse
Engineering

Forward
Engineering

Code

Design

Pick
Wor kpiece

Log
Alar ms

Telegram
For warder

Telegram
Recei ver

Telegram
Converter

SetPoint
Calculation

Command

Logging
Strategy

Command
Processor Logger

The net work

creates

executes

applies passes
commands to

passes tel egrams to
passes tel egrams to

Conference
Organizer

uses
Conference
Manager

Conference
Participant

Conference

Conference
Session

organizes

manages

Scheduler
uses

has*

*

Documents

uses

Media
Manager

*

participates

Requirements

5

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 99

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring in Depth

• What is Refactoring?
• According to Martin Fowler it is

• „... the process of changing a
software system in such a way
that it does not alter the external
behavior of the code yet
improves its internal structure“

• „... a disciplined way to clean up
code that minimizes the chances
of introducing bugs“

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 1010

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Reasons for Refactoring

• Reasons to use
Refactoring:

• Design improvement and
maintenance

• Better readability
• Bugs

• The Rules of Three:
• Refactor before adding new

functionality. E.g., when
structure prevents simple
additions

• Refactor when fixing bugs
because refactoring helps to
find the bug

• Within Code Reviews to
apply improvements

6

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 1111

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Smells

• Grandma of Kent Beck: „If it
stinks, change it“

• Thus, identify bad smells such
as

• Code is duplicated
• Methods that span several dozens

of lines
• All subclasses introduce the same

method
• Temporary variables
• Switch Statements
• Middle Man

• Martin Fowler includes a large
list of smells in his book

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 1212

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

How to leverage Refactoring?

• It is essential to set up a huge
test suite (xUnit)

• Refactoring steps are small
(design a little, code a little,
change a little, test)

• Worst problem or risk areas
first

• If test suite fails start again

7

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 1313

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Some Properties of Refactorings

• A Refactoring reveals the following parts:
• Name, for example: Extract Method
• Summary (of Situation), for example: Code fragment that can be grouped together.

Turn the fragment into a method whose name explains the purpose of the method
• Motivation. For example, use Extract Method when encountering long methods or

replicated code
• Mechanics, for example:

• Create a new method and name it after the intention of the method
• Copy extracted code from source to new target method
• Scan extracted method for local variables
• If one mutated local variable, make method as a query that returns that local variable‘s

value. If more than one you might need to apply additional refactorings first (e.g., Split
Temporary Variable)

• Read-only local variables will be passed as parameters to new target method
• Compile
• Replace in source-code extracted code with call to new target method
• Compile and test

• Examples: illustrate usage (see previous slide)
• Refactorings might be considered like patterns: forces, context, problem, solution
• Most refactoring are reversible (see Inline Method refactoring)

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 1414

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Extract Method

void printFormatted(string text) {
System.out.println(„Copyright (c) 1006, Siemens AG“);
System.out.println(„Author: Michael Stal“);
printRest(text);

}

void printFormatted(string text) {
printHeader();
printRest(text);

}

printHeader() {
System.out.println(„Copyright (c) 1006, Siemens AG“);
System.out.println(„Author: Michael Stal“);

}

• Note 1: examples are in Java/C# only for sake of brevity
• Note 2: the subsequent examples only show the mechanics for the same reason

8

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 1515

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Rename Method

void accCustDB() { ... } // ???

void accessCustomerDatabase() { ... }

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 1616

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Pull Up Method

9

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 1717

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Extract Interface

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 1818

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Extract Subclass

10

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 1919

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Collapse Hierarchy

• If class and subclass don‘t differ too much

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 2020

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Replace Inheritance with
Delegation

• Create field for superclass, adjust methods to delegate,
remove subclassing

11

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 2121

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Inline Method

int getRating() {
return (moreThanFiveLateDeliveries()) ? 2 : 1;

}
boolean moreThanFiveDeliveries() {

return _numberOfLateDeliveries > 5;
}

int getRating() {
return (_numberOfLateDeliveries > 5) ? 2 : 1;

}

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 2222

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Encapsulate Field

class PrettyPrinter {
public long printerPort;

}

class PrettyPrinter {
protected long printerPort;
long getPrinterPort() {

return printerPort;
}
void setPrinterPort(long PrinterPort) {

this.printerPort = printerPort;
}

}

12

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 2323

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Introduce Null Object

void prettyPrint(string filename, Printer p) {
PrinterPort p;
if (null == printer)

p = localPrinter.getPort();
else p = printer.getPort();
print(p, filename);

}

class NullPrinter : Printer {
public NullPrinter() {

port = localPort;
}
public PrinterPort getPort() { return port; }

}

void prettyPrint(string filename, Printer p) {
print (p.getPort(), filename);

}

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 2424

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Introduce Assertion

void prettyPrint(string filename, Printer p) {
if (null != p) {

....
}

}

void prettyPrint(string filename, Printer p) {
Assert.isTrue (null != p) {

....
}

}

13

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 2525

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Change Reference to Value

• If a type is immutable, small, difficult to manage

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 2626

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Parametrize Method

class Servlet{
public void handlePut() { }
public void handleGet() { }

}

class Servlet{
public void handle(ServiceType st) {

...
}

}

14

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 2727

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Replace Constructor with Factory
Method

class PrettyPrinter {
public PrettyPrinter(...) { }

}

class PrettyPrinter {
protected PrettyPrinter(...) { };
PrettyPrinter create(...) {

// do preprocessing
return new PrettyPrinter(...);
// do postprocessing

}
}

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 2828

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Replace Type Code with
Subclasses

• Get rid of immutable type codes that affect class behavior

15

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 2929

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Eliminate expensive Value Object
Operations

string createString() {
string s = „Hello „ + „world „ + „ of“ + „ refactoring“;
return s;

}

string createString() {
StringBuffer sb = new StringBuffer(80);
sb.Append(„Hello „);
sb.Append(„world „);
sb.Append(„ of“);
sb.Append(„ refactoring“);
return s.toString();

}

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 3030

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Replace Error Code with
Exception

int withdraw(int amount) {
if (amount > _balance)

return -1;
else {

_balance -= amount;
return 0;

}
}

void withdraw(int amount) throws BalanceException {
if (amount > _balance) throw new BalanceException();
_balance -= amount;

}

16

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 3131

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Replace Parameter With Method

int basePrice = _quantity * _itemPrice;
discountLevel = getDiscountLevel();
double finalPrice = discountedPrice (basePrice,
discountLevel);

• An object invokes a method, then passes the result as a parameter for a method.
The receiver can also invoke this method

int basePrice = _quantity * _itemPrice;
double finalPrice = discountedPrice (basePrice);

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 3232

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Replace Magic Number with
Symbolic Constant

double potentialEnergy(double mass, double height) {
return mass * 9.81 * height;

}

double potentialEnergy(double mass, double height) {
return mass * GRAVITATIONAL_CONSTANT * height;

}
static final double GRAVITATIONAL_CONSTANT = 9.81;

17

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 3333

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Introduce Explaining Variable

if ((platform.toUpperCase().indexOf("MAC") > -1) &&
(browser.toUpperCase().indexOf("IE") > -1) &&
wasInitialized() && resize > 0)

{
// do something

}

• To make expressions more readable

final boolean isMacOs =
platform.toUpperCase().indexOf("MAC") > -1;

final boolean isIEBrowser =
browser.toUpperCase().indexOf("IE") > -1;

final boolean wasResized = resize > 0;
if (isMacOs && isIEBrowser && wasInitialized() &&

wasResized)
{ // do something }

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 3434

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Split Temporary Variable

double temp = a * b; // calculate surface;
System.out.println(temp);
double temp *= c; // calculate volume
System.out.println(temp);

final double surface = a * b;
System.out.println(surface);
final double volume = surface * c;
System.out.println(volume);

18

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 3535

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Replace Conditional with
Polymorphism

double getSpeed() {
switch(_type) {

case EUROPEAN: return getBaseSpeed();
case AFRICAN: return getBAseSpeed() – numberOfCoconuts;
...

}
}

class Bird {
public double getSpeed() ...

}
class European : Bird {

public double getSpeed() {
return getBaseSpeed():

}
}

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 3636

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Remove Middle Man

class Person ...
Department _dep;
public Person getManager() {

return _dep.getManager();
}
...

}
manager = john.getManager();

class Person ..
public Department getDepartment() {

return _dep;
}

...
}
Manager = john.getDepartment().getManager();

19

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 3737

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring Examples: Move field

class Account ...
private AccountType _type;
private double InterestRate;
double Calculate(double amount, int days) {

return _interestRate * amount * days / 365;
}

]

• Field is more used in other class

class AccountType ...
private double _interestRate;
void setInterestRate(double arg) {_interestRate = arg; }
void getInterestRate() { return _interestRate; }

}
// in class Account:

double Calculate(double amount, int days) {
return _type.getInterestRate() * amount * days / 365;

}

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 3838

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring and Tools

• Most IDEs tightly integrate refactoring, e.g. VS.NET 2005:

20

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 3939

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring and Tools (cont‘d)

• Eclipse 3.1 / Java IDE:

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 4040

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Refactoring and Tools (cont‘d)

• C++:
• Slickedit provides several refactorings for C/C++
• Ref++: commercial add-in for Visual Studio
• Xrefactory for C++: emacs plug-in

• Additional Tool Support for:
• VB
• Python
• Haskell
• Smalltalk
• Self
• Delphi

21

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 4141

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Pattern-based Refactoring

• Two perspectives:
• Refactorings might be

documented in kind of pattern
form

• Patterns might help to refactor
on architectural level:

• Replace your proprietary
solution with a pattern that
solves the same problem

• Introduce symmetry and
orthogonality by making sure
the same problem is always
solved using the same
pattern/solution

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 4242

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Example: Applying Observer

• Observer Pattern

s->getData()

Observer

update

ConcreteObserver
update
doSomething

state = X;

notify();

Subject

attach
detach
notify
setData
getData

state
observerList

for all observers
in observerList do

update();

*EventSink
update
doSomething

Subject

notify
setData
getData

state
observerList

*

Subject contains
hardwired list of
interested
components

• Do it yourself:

22

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 4343

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Problems in Practice

• Time pressure: managers and
developers hesitate because

• they don‘t see the benefits
• Don‘t want to spend additional time

and resources
• It is not always possible to refactor

(e.g., re-engineering might be the
better choice)

• Difficult to choose between
different options or ways

• It is difficult to forecast how local
improvement changes the global
architecture (process should favor
strategic architecture design and
tactical architecture design)

• Implications:
• It is necessary to educate developers
• Experience helps
• Tool support is essential

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 4444

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Q&A

23

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 4545

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Conclusions

• Refactoring improves the code/design without changing
behavior. It more applies to the code

• Reengineering is a complete redesign of an architecture and
might also change behavior. It applies also to the architecture

• Both methods are essential, but use the right one for the right
purpose

• If refactoring is applied, make sure your environment is
appropriate

• Your process should allow to design a little, code a little, test
• Unit testing is extremely important
• Refactoring without appropriate tools is tedious and error-prone

• Visit http://www.refactoring.com/catalog/ for refactoring list

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 4646

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

References

24

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 47

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

M. Fowler, K. Beck, J. Brant, W. Opdyke, D.
Roberts: Refactoring: Improving the Design
of Existing Code, Addison-Wesley, 1999

S. Demeyer, S. Ducasse, O. Nierstrasz: Object-
Oriented Reengineering Patterns, Morgan
Kaufmann, 2002

References

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 48

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Kerievsky, Joshua: Refactoring to Patterns,
Addison-Wesley, 2004

References (cont’d)

25

© Siemens AG, CT SE 2, Michael StalSoftware Architecture: Refactoring 4949

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

Web References

• William C. Wake: „Refactoring Workbook“
http://xp123.com/rwb/RWB-draft3.PDF

• Martin Fowler, „Refactoring Home Page“
http://www.refactoring.com

• Joshua Kerievsky: „Refactoring to Patterns
Home Page“
http://industriallogic.com/rtpdata/index.html

