
© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

www.computer.org/software

Using Architectural Patterns and Blueprints
for Service-Oriented Architecture

Michael Stal, Siemens Corporate Technology

Vol. 23, No. 2
March/April 2006

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

5 4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E

technology but an architectural solution for a
specific design problem in a given context—
with XML Web services being just one possi-
ble implementation technology.

Understanding SOA and all of its implica-
tions for software applications requires introduc-
ing a set of architectural principles that define
SOA more concretely. Once developers under-
stand the SOA paradigm from an architectural
perspective, they can better leverage SOA imple-
mentations. As with many other technologies for
developing distributed systems, ensuring trans-
parency—hiding the underlying communication
structure’s implementation details—helps devel-
opers focus on domain-specific problems. How-
ever, many forces in addition to transparency
drive service-oriented applications. To build soft-
ware applications that not only consider the

functional specification but also meet opera-
tional and developmental properties, developers
must understand the underlying architectural
principles.

So, how can we effectively define and ex-
press SOA’s core principles? Software patterns
are perfect for this. Contrary to common be-
lief, software patterns are useful not only for
building new software applications but also for
understanding existing applications and their
platforms. Patterns don’t completely cover all
general-purpose or domain-specific areas, but
architectural blueprints—which aren’t full-
blown patterns but reveal the same proper-
ties—can fill the remaining gaps. Furthermore,
software patterns and blueprints can accom-
modate both forward and reverse engineering.

Here, I illustrate both directions using SOA

focus
Using Architectural
Patterns and Blueprints
for Service-Oriented
Architecture

I
f you’re a software expert, you’ve almost certainly encountered the
topic of service-oriented architecture in recent years. However, most
publications fail to explain SOA or simply assume it merely defines a
synonym for a stack of XML Web service protocols and standards. In

fact, there are many possible views of SOA—most of which focus on tech-
nologies and implementations for service orientation rather than the architec-
ture. SOA in its fundamental core doesn’t simply define an implementation

Michael Stal, Siemens Corporate Technology

Using software
patterns and
blueprints to
express a service-
oriented
architecture’s
fundamental
principles supports
the efficient use of
SOA technologies
for application
development.

software architecture

as an example. Using the core SOA principles I’ll
introduce, software architects can derive best-
practice pattern systems and catalogs that illus-
trate how to leverage existing SOA technologies.

Driving forces
The central objective of a service-oriented

approach is to reduce dependencies between
“software islands,” which basically comprise
services and the clients accessing those serv-
ices. These service-oriented software systems
need to balance the following forces:

■ Distribution: From a logical perspective
(but not necessarily in the physical imple-
mentation, since some layers and compo-
nents might be collocated), the software
environments under consideration consist
of different software entities running on
different network nodes that might need to
cooperate via a communication protocol.

■ Heterogeneity: The distributed software
entities typically reside in heterogeneous
environments, so client developers can’t
control remote services’ implementation
details. Also, service developers can’t as-
sume a priori which kinds of clients will
use the services and in which contexts.

■ Dynamics: The software systems mostly
comprise highly dynamic environments, so
designers can’t statically predefine many
decisions, because the decisions must be
dynamically configured at runtime.

■ Transparency: Remote-services providers
and consumers should be oblivious to the
underlying communication infrastruc-
ture’s implementation details. (We can
also derive transparency from the hetero-
geneity and dynamics.)

■ Process-orientation: Services often imple-
ment fine-grained functionality, while
clients need to compose services that re-
sult in more coarse-grained building
blocks. So, it’s essential to compose multi-
ple services for coordinated workflows.

According to existing literature, these
forces help drive loosely coupled systems.1 I
thus describe the SOA mantra as loose cou-
pling. To balance these forces and enable
loosely coupled software applications, the un-
derlying distribution and communication in-
frastructure must follow architectural princi-
ples that support these forces.

Architectural principles
Many publications define SOA using a ter-

nary relationship model that depicts the main
SOA participants and their dependencies. Ser-
vice providers register their services with a
central repository, and service consumers
query the repository for the services they need.
Once clients have identified the right services
within the repository, they can directly inter-
act with those services.

This generic model doesn’t explain the dif-
ferences between standard middleware and
the service-oriented approach. It turns out that
the model applies to all kinds of distribution
middleware including CORBA, a Distributed
Component Object Model, Java remote
method invocation (RMI), and .NET Remot-
ing. Refining this model for an SOA context
requires defining the following aspects in more
detail:

■ Interfaces and contracts: How can service
providers describe the services and con-
tracts offered to the client? How can clients
understand and access these services?

■ Communication: Which communication
styles are available for client-services in-
teraction? What is the transmitted infor-
mation’s content and semantics?

■ Service lookup and registration: How can
service providers make their services
known to clients, and how can clients lo-
cate the services they require?

■ State and activation: How does the infra-
structure deal with state information and
activation issues, especially when it uses
stateless communication protocols and
services internally?

■ Processes and their implementation: If
clients must combine different independ-
ent services to complete processes, how
can the infrastructure support service co-
ordination and orchestration?

I can answer these questions using the ar-
chitectural principles to which an SOA must
conform. (I could cover other issues here, such
as versioning and security concerns, but in-
stead I spend more time elaborating on the ar-
chitectural principles.)

Interfaces and contracts: Loose coupling
To decouple clients from service implemen-

tation details and decouple services from

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 5 5

The central
objective of
a service-
oriented

approach is
to reduce

dependencies
between

“software
islands.”

clients, the Bridge pattern2 separates the serv-
ice interface (see the Explicit Interface pat-
tern3) from the service implementation (see
figure 1). Clients access an explicit service in-
terface, which delegates all incoming client re-
quests to the actual service implementation.
So, you can change the service interface with-
out changing the service implementation, and
vice versa. Interfaces aren’t necessarily limited
to method invocation interfaces, at least not
on the physical layer. They might also be sig-
nal-, message passing-, or event-based.

On the client side, the Proxy pattern2,4

shields clients from all communication activi-
ties with the service, thus enabling distribu-
tion and transparency. If protocol independ-
ence is important, we might further refine the
proxy implementation using the Forwarder-
Receiver pattern.4 This pattern introduces
forwarder components (which forward mes-
sages to a remote peer) and receiver compo-
nents (which receive the messages from the re-
mote peer) as additional participants for
hiding the underlying communication infra-
structure’s details. It might also help foster
dynamics by flexibly loading forwarders and
receivers at runtime.

Describing and implementing interfaces are
important with respect to heterogeneity. If
clients and services can use different imple-
mentation technologies, developers must be
able to define and express interfaces in a tech-
nology-agnostic way. Thus, clients and serv-
ices must stick with a least common denomi-
nator. Proxies and bridges must provide a type
mapping layer for marshaling and demarshal-
ing data types between heterogeneous clients
and services as well as between the communi-
cation layer and programming language at
runtime.

An interface description language (which
denotes a kind of Domain Specific Language)
allows an explicit definition of the concrete
contract between a service and its clients. The
constituents of this contract might include

■ the description of the service’s functional-
ity as well as preconditions, postcondi-
tions, and invariants;

■ the service’s physical location;
■ a semantic description of the service; and
■ quality-of-service and contextual informa-

tion.

The Reflection pattern can help supply and
leverage this kind of meta-information.4 The
Interpreter pattern2 supports the development
of generators that use the Reflection pattern to
dynamically reflect over the interface descrip-
tions and use the information to generate all
necessary artifacts such as proxies or bridges
either statically or dynamically.

Communication: Message-exchange patterns
To provide loose coupling and flexibility

with respect to communication, an SOA must
support various communication styles—for
example, one-to-one and many-to-many com-
munication and event- and remoting-based
communication. On the bottom layer, clients
and services communicate asynchronously by
exchanging messages using various message-
exchange patterns. In the Message Passing
blueprint, clients and services communicate by
transmitting messages. Consequently, commu-
nicating peers must establish a direct commu-
nication channel to send messages to their re-
mote peers.

However, for high flexibility and dynamics,
communicating peers shouldn’t transmit mes-
sages across a fixed communication line but
rather through dynamic message routes. Apply-
ing the Store-and-Forward blueprint (or Message
Queue blueprint; see www.michael-stal.com) in-
troduces additional queues to store messages
temporarily, forwarding them when the next re-
ceiver becomes available. So, no direct commu-
nication link exists between the client and ser-
vice, and no tight coupling occurs between
communication partners. (The detailed con-
cepts of message-based communication appear
elsewhere.5)

When heterogeneous software entities send
messages back and forth, it’s essential that
peers agree on a common format for the mes-
sage packets (also called documents). Other-
wise, the receiver can’t interpret and under-
stand the message. Two approaches exist for
determining the format. In the first approach,
for each communication relation, the peers in-

5 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Abstraction

operation()

ImplementationARefinedAbstraction

Client

ImplementationB

Implementation Implementation

Implementation()

Figure 1. The Bridge
pattern decouples
clients and service
implementations using
interfaces as
abstraction layers
(italics indicates an
abstract class).

dividually agree on a concrete message struc-
ture and semantics. This approach leads to a
combinational explosion if many peers are
available. Additionally, applications must
manually process messages.

In the second approach, a standardized spec-
ification defines the message content and seman-
tics. This is less flexible but more convenient, be-
cause it allows automating message processing.

We can divide documents into a body that
contains the actual message and an optional
part that carries additional information such
as quality-of-service properties or routing in-
formation. Interceptors6 are available on the
client and on the server side responsible to au-
tomatically and transparently create and
process these additional out-of-the-band prop-
erties such as security information, other qual-
ity-of-service properties, and service-level
agreement information.

The communication protocol can support
sending documents as binary units or plain
text (for example, XML). Concrete SOA im-
plementations might use both options.

Because transparency represents a driving
SOA force, implementing a message exchange in
the infrastructure’s communication-specific
parts doesn’t imply that clients and services
must interoperate in a message-oriented way.
When system developers place the Broker pat-
tern4 above the message-based communication
protocol, client- and server-side proxies and
bridges hide communication internals and pro-
vide a synchronous invocation-based view of
communication. In this case, additional patterns
help deal with asynchronous messaging’s idio-
syncrasies. For example, the Asynchronous
Completion Token pattern6 applies to an associ-
ate reply with request messages by piggy-pack-
ing unique out-of-the-band tokens together with
the messages themselves (so it includes addi-
tional information not related to the actual com-
munication). Patterns such as the Observer pat-
tern2 and the Reactor pattern6 help deal with
the asynchronous reception of reply messages.

Service lookup and registration
To access a specific service, a client must

first locate it. Developers can hard-code loca-
tion information in the client code, but this
leads to tight coupling. It introduces location
dependencies in client implementations, which
results in additional liabilities such as reduced
fault tolerance. A more flexible approach is to

apply the Client-Dispatcher-Server pattern4—
a constituent of the Broker pattern.

The Client-Dispatcher-Server pattern intro-
duces an additional intermediate actor, the dis-
patcher, between clients and services. Service
implementations register their services with
the dispatcher, which acts as a service (infor-
mation) repository. Clients query the dis-
patcher for available services. I can further im-
prove this kind of loose coupling by adding
yet another indirection layer. Instead of main-
taining service locations in its repository, the
dispatcher might maintain interface descrip-
tions to enable late binding strategies and flex-
ible service discovery. For instance, if the same
service is available from different implementa-
tions, a client might want to query the reposi-
tory for additional information, such as qual-
ity-of-service aspects, to determine the most
appropriate service implementation.

How clients specify services and their loca-
tions is also important. For example, clients
might use opaque references, port numbers, or
URLs to specify services, depending on the
concrete communication protocol available.

Removing the clients’ and services’ depend-
ency on the service repository’s concrete loca-
tion further improves loose coupling. So, the
dispatcher turns into a proxy component that
doesn’t maintain service information locally but
provides transparent access to remote reposito-
ries with the actual information. These reposi-
tories might be available at predefined loca-
tions, or clients could dynamically locate them.
For this purpose, the Lookup pattern7 is a more
reasonable choice, especially in the context of
peer-to-peer networks.

State and activation: Services and singletons
Loose coupling and scalability increase

when communication protocols and services
don’t maintain state information across multi-
ple message exchanges. Service implementa-
tions may be provided as a single object (for
example, using the Resource Lifecycle Man-
ager pattern7). Different optimizations are
possible when services and protocols are state-
less, such as

■ on-demand activation (Activator pattern)
or eviction of services (Evictor pattern7),
which reduce resource contention, or

■ preinstantiation of multiple service in-
stances in an object pool7 to improve serv-

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 5 7

Removing the
clients’ and
services’

dependency on
the service
repository’s

concrete
location further
improves loose

coupling.

ice access time, especially when many
clients are accessing the service.

Although the fundamental SOA infrastruc-
ture strives for statelessness, circumstances ex-
ist under which we must preserve the state and
identity in client-service interactions:

■ Service affinity: When services are associ-
ated with concrete entities, clients some-
times must address a concrete service in-
stance that represents exactly a particular
logical or physical entity.

■ Sessions: For efficiency reasons, some
services might provide information in sev-
eral chunks or otherwise depend on the re-
sults of previous interactions. Thus, the
service must maintain session information
for its clients. Patterns such as Caching or
Lazy Acquisition7 are helpful here.

In both cases, the solution consists of provid-
ing additional context information that’s
transmitted in all message exchanges. We can
again use the Asynchronous Completion To-
ken pattern.

For service affinity, a token helps represent
a specific service instance. The service imple-
mentation can use the token to dispatch a
client request to the specified instance. Alter-
natively, the service singleton can use the to-
ken to assume a specific identity.

To maintain session information, the token
can serve as a session database’s primary key.
Typically, the service uses the token as a pri-
mary key for a back-end database or file sys-
tem that persistently retains the session infor-
mation. But how can the service determine
when the session ends? One possible option is
to introduce leasing strategies.7

So, the SOA implementation can manage
state and identity information, or applications
can manage the information manually. For
transparency reasons, the first alternative
seems more appropriate. Of course, the infra-
structure must beware of security issues such
as token spoofing and reuse.

Processes and their implementation:
Coordination and orchestration

In contrast to standard distribution middle-
ware such as CORBA or Java RMI, an SOA im-
plements processes as first-class entities.
Clients compose unrelated and independent

services to processes to achieve a common goal
that they couldn’t reach using a single service.

For easy service composition, a language
should be available that lets developers de-
scribe processes in a higher layer of abstrac-
tion instead of forcing clients to invoke all re-
quired services from within a standard
programming language (using the Language
blueprint8). From the process descriptions, a
model-based generator creates new macro
services that aggregate finer-grained services
according to the process description.

Unfortunately, it’s rarely sufficient to simply
access a collection of existing services in an un-
coordinated way. Often, the composition
process must meet additional coordination re-
quirements. Some scenarios require service
compositions to behave in a transactional,
atomic way—for example, if a critical service
fails, the composition process must at least
partially roll back the results of previous serv-
ice invocations. The Coordinator pattern deals
with this issue by introducing a central coordi-
nation instance.7 Depending on concrete appli-
cation requirements, the coordinator should
apply the Strategy pattern2 to let process initia-
tors switch between different coordination
strategies. For example, in the transaction ex-
ample, the choice might be using a Two-Phase
Commit pattern for transaction control or ap-
plying the Compensating Transaction blue-
print.9 The Asynchronous Completion Token
pattern can enable this kind of service orches-
tration by providing a coordination context.6

Concrete technology examples
The SOA paradigm is agnostic with respect

to specific technologies and implementation
options. Possible implementation technologies
include XML Web services, Object Manage-
ment Group CORBA, Java RMI, .NET Remot-
ing, email, Message-Oriented Middleware
(MOM), or TCP/IP. Even real-world mail
services apply most of the architectural princi-
ples. For the sake of brevity, I discuss only a
MOM example here.

It’s easy to apply MOM—such as the IBM
MQSeries, Microsoft Message Queuing (MSMQ)
services, or Java Message Service—when im-
plementing the SOA paradigm.

Interfaces and contracts
In MOM, interfaces only comprise func-

tionality for forwarding and receiving mes-

5 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

In contrast
to standard
distribution
middleware
such as CORBA
or Java RMI,

an SOA
implements

processes as
first-class

entities.

sages using simple message queues. Develop-
ers can implicitly specify service interfaces
without involving the underlying middleware.
Messages have a predefined internal structure,
but application developers can transfer delib-
erate content such as raw data, text, or
streams within these messages. Method-based
brokers can hide the underlying middleware’s
message-oriented nature. For example, in Mi-
crosoft COM+, queued components are im-
plemented on top of MSMQ. As a conse-
quence, each service interface is made explicit
using the Component Object Model Interface
Definition Language to specify the external in-
terfaces of queued components. In other
words, a particular domain-specific language
is leveraged that maps domain-specific inter-
face descriptions and service contracts to im-
plementation artifacts that hide the underlying
middleware from application developers.

Communication
MOM implementations are based on pro-

prietary protocols. They provide a message-
passing approach whereby message producers
send messages to either one or multiple re-
ceivers respectively to the queues with which
they’re associated. As already mentioned, the
different participants can agree on the struc-
ture of the documents sent between message
producers and consumers.

Service lookup and registration
Message senders explicitly address the

physical location of a receive queue in which
the MOM should place a message. Directory
services usually store the queues’ physical ad-
dressing information so that senders don’t
need explicit knowledge of the message receive
queues.

State and activation
MOM implements services—that is, message

receivers—as singletons. Session information
can be provided in a message’s infrastructure.

Processes and their implementation
Most MOM implementations support

transaction-based programming but don’t in-
troduce the notion of processes explicitly.
However, we could introduce a specific lan-
guage such as the Business Process Execution
Language to implement business processes in
addition to MOM.

Outlook
I’ve introduced the fundamental architec-

tural principles that form the base of the cur-
rent understanding of SOA systems. However,
SOA technologies’ instability and immaturity
make them fast-moving targets. Thus, the SOA
paradigm itself is subject to further evolution.
Of course, no one can anticipate all of the ele-
ments of future service-oriented infrastructures,
but here I identify some deficiencies of the cur-
rent paradigm and illustrate possible solutions.

Currently, three main research questions exist:

■ How can we leverage semantic informa-
tion in SOA systems?

■ How can we deal with integration issues
when providing SOA frameworks?

■ How can we extend the SOA approach
with respect to the resources it supports?

Semantic integration
Most available SOA technologies empha-

size a service-oriented system’s syntactical as-
pects but don’t sufficiently deal with semantic
issues. Using semantic information, however,
enables the development of adaptive and self-
configuring solutions. For example, semantic
information could enable the automatic com-
position of service-based processes on behalf of
clients and the dynamic integration of adapters
if a particular client can’t handle the service in-
terface provided. So, SOA systems should inte-
grate semantic information and semantic pro-
cessing in different layers.

The semantic layer enriches the syntactic def-
inition of services so semantic properties become
an essential part of the service contract. Such in-
formation might include contextual information
(for example, security roles or location informa-
tion), quality-of-service attributes (such as re-
sponse times), or ontology information (such as
using keywords from standard taxonomies).

The communication layer then must under-
stand and process the semantic information.
Services that process semantic information, such
as load balancers or security implementations,
must be able to intercept client invocations,
message exchanges, and service processing.

Finally, clients, services, and repositories
need API support to introspect, express, or even
change semantic information and behavior.

The Reflection, Interpreter, and Interceptor
patterns can help, as well as the Decorator
and Chain-of-Responsibility patterns.2

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 5 9

SOA
technologies’
instability and

immaturity
make them fast-
moving targets.
Thus, the SOA

paradigm itself
is subject to

further
evolution.

An SOA
implementation
shouldn’t follow

a monolithic
approach but
provide an
integrated
solution.

Middleware integration
Many toolkits for XML Web services sepa-

rate aspects in different parts of their imple-
mentations, which is an adequate approach if
it doesn’t neglect transparency requirements.
Today, developers must manually integrate
service implementations with back-end func-
tionality, add horizontal functionality such as
security, provide their own state and identity
management, and deal with many other as-
pects of service invocation and processing in an
implementation-specific manner. So, adding
services to a given application increases com-
plexity. Moreover, many parts of an SOA ap-
plication or infrastructure aren’t easy to
change, such as the underlying communication
protocol or security mechanisms.

As a consequence, an SOA implementation
shouldn’t follow a monolithic approach but
provide an integrated solution, where most
parts are configurable and extensible without
impacting client and service code. For exam-
ple, it shouldn’t matter to back-end developers
if the internal J2EE components they’re imple-
menting are for Java RMI or for services that
clients can invoke using SOAP.

The Reflection and Interceptor patterns as
well as the Container pattern10 can help intro-
duce this kind of integrative SOA middleware
(also known as the Enterprise Service Bus11).

Further resource types
Services in a service-oriented system de-

note functional building blocks that clients
can remotely access in a technology-agnostic
way. In addition to services, a distributed ap-
plication typically must use other resource
types, such as objects in a database or files in
a file system. If the details of accessing these
resource types should be hidden from appli-
cations (such as with Grid systems), a similar
strategy applies. Developers can wrap re-
sources such as files and persistent objects in
a database as services.

Best-practice patterns
Applying patterns and blueprints to explain

or invent infrastructures and paradigms is one
side of the coin. The other side is leveraging
this architectural knowledge to effectively de-
velop efficient applications running on these
infrastructures. Researchers have introduced
best-practice pattern systems for Web-based
applications for this reason,12,13 and some pat-

tern literature even focuses on SOA applica-
tions.14 Here I apply some well-known Core
J2EE patterns12 that will help developers build
efficient SOA applications.

First of all, it’s useful to defer some re-
quirements from the SOA architectural princi-
ples with respect to application development.
For examples, systems should aim to

■ minimize client-service communication,
which is a time-consuming and resource-
intensive activity;

■ decouple clients and services from infra-
structural issues such as service discovery,
actual communication, and implementa-
tion to achieve flexibility, loose coupling,
and transparency; and

■ increase application developer productivity.

Developers might apply the following patterns
to achieve these goals (see figure 2).

A Business Delegate shields client applica-
tions from all aspects of remote communica-
tion with services such as discovery, message
transfer, or exception handling. However,
Business Delegates often need to perform the
same tasks again and again, such as accessing
the available service discovery mechanisms. A
Service Locator and Lookup Service helps
move such common and iterative tasks to sep-
arate components.

Session Facades implement stateless and
coarse-grained entities that trigger workflows
and activities in the back end. Their interfaces
should mainly offer functionality to initiate
and manage whole processes. By not forcing
clients to access multiple services directly, this
pattern reduces communication overhead and
decouples clients from any back-end changes
such as workflow reorganizations.

Back-end functionality and services shouldn’t
depend on low-level persistence mechanisms.
Hence, Data Access Objects represent an inter-
mediate layer that shields services and compo-
nents from specifics of database and enterprise
information systems.

To increase granularity of service inter-
faces, single message exchanges between
clients and services shouldn’t transfer fine-
grained data types but wrap complete seman-
tically related data to Transfer Objects.

Although these patterns were originally
used to build Java EE applications, we can ap-
ply them to SOA environments.

6 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

U sing software patterns and blueprints
to express an infrastructure or a tech-
nology’s fundamental principles ap-

plies a backward-engineering approach. In con-
trast to forward-engineering with patterns, this
approach doesn’t require a complete pattern
language or even a pattern system. However,
knowing pattern variants and implementation
options helps define how to change or extend
specific architectural aspects, thus enforcing a
paradigm’s systematic evolution. I applied this
strategy to SOA by reverse-engineering funda-
mental architectural principles from existing
SOA implementations. The approach is also an
excellent vehicle for pattern mining and com-
paring alternative technology platforms.

Of course, this work only scratches the sur-
face. We’ll need to dig deeper with future ac-
tivities, such as introducing a systematic back-
ward-engineering process as well as developing
means to use the architectural principles dis-
covered for model-based development and as-
pect-oriented programming.

References
1. D. Kaye, Loosely Coupled—The Missing Pieces of Web

Services, RDS Press, 2003.
2. E. Gamma et al., Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, 1994.
3. F. Buschmann and K. Henney, “Explicit Interface and

Object Manager,” Proc. 8th European Conf. Pattern
Languages, Hillside Group Europe, 2003.

4. F. Buschmann et al., Pattern-Oriented Software Archi-
tecture—A System of Patterns, John Wiley & Sons,
2006.

5. G. Hohpe and B. Woolf, Enterprise Integration Pat-
terns: Designing, Building, and Deploying Messaging
Solutions, Addison-Wesley, 2003.

6. D. Schmidt et al., Pattern-Oriented Software Architec-
ture—Patterns for Concurrent and Networked Objects,
John Wiley & Sons, 2000.

7. J. Kircher and P. Jain, Pattern-Oriented Software Archi-
tecture—Patterns For Resource Management, John Wi-
ley & Sons, 2005.

8. E. Evans, Domain Driven Design, Pearson Education,
2004.

9. P. Bernstein and E. Newcomer, Principles of Transaction
Processing, Morgan Kaufmann, 1996.

10. M. Voelter, A. Schmid, and E. Wolff, Server Component
Patterns, John Wiley & Sons, 2002.

11. D.A. Chappel, Enterprise Services Bus, O’Reilly, 2004.
12. D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns—

Best Practices and Design Strategies, Prentice Hall,
2001.

13. Enterprise Solution Patterns Using .NET, Microsoft
Press, 2003; http://msdn.microsoft.com/practices/Topics/
patterns/default.aspx?pull=/library/en-us/dnpatterns/html/
esp.asp.

14. M. Endrei et al., Patterns: Service-Oriented Architecture
and Web Services, IBM, 2004; www.redbooks.ibm.com/
redbooks/pdfs/sg246303.pdf.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 6 1

1..*

BusinessDelegateClient

LookupService

remote API

uses SessionFacade

BusinessEntity BusinessSession

DataAccessObject

local API

accesses

accesses accesses

lookup/create

local

BusinessObject

Figure 2. Applying core
J2EE patterns in SOA-
based contexts.

About the Author

Michael Stal is senior principal engineer at Siemens Corporate Technology, Munich,
where he leads the Center of Competence for middleware, architecture, and integration. His re-
search interests include software architecture, middleware, service-oriented architecture, con-
current and networked systems, and product-line engineering. He received his diploma in com-
puter science and mathematics from Technische Universität München. He’s a member of the
German GI (Gesellschaft für Informatik) and is editor in chief of JavaSPEKTRUM. Contact him at
Siemens Corporate Technology, Dept. CT SE 2, Otto-Hahn-Ring 6, D-81730 Munich, Germany;
michael.stal@siemens.com.

