
1

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

Software &
Engineering
Architecture

SOA – Patterns and Best Practices

Michael Stal
Senior Principal Engineer
Siemens AG, Corporate Technology
Michael.Stal@siemens.com

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
2

Software &
Engineering
Architecture

Agenda

• SOA Motivation

• Implication of SOA Principles:
Patterns, and Best Practices

• Quality Related Best Practices

• Summary

2

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
3

Software &
Engineering
Architecture

SOA is not Web Services - Example E-Mail

• E-Mail denotes a typical example of a SOA architecture
• Only one kind of service

• ... but offering a standard interface

• Communication using asynchronous message exchange

• Implementation-agnostic: different mail client and mail server
implementations

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
4

Software &
Engineering
Architecture

Tracking the SOA Principles

3

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
5

Software &
Engineering
Architecture

Interfaces and Schemas (1)

• Role based interfaces
• Minimize impact of future changes

• Explicit Interfaces
• Contract with the interface not

the implementation

• Encapsulated Implementations
• Hide implementation details

Role-Based
Interface1

service_1()

Role-Based
Interface2

service_2()

Implementation

svc_1_impl()
svc_2_impl()

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
6

Software &
Engineering
Architecture

Interfaces and Schemas (2)

• Explicit, Role-based
Interfaces represent a
Service Interface expressed
using a Schema (e.g., XML)

• Schema contains structural
information (service) as well
as physical binding
(network address)

• The Service itself
(Implementation) is loosely
bound to the service
interface

• Useful to leverage
generator techniques for
providing infrastructural
glue

• Consequences
• Clients and services unaware of each

other‘s implementation technology

• Interface standardized instead of code

• systems are heterogeneous =>
interface must stick to least common
denominator

• Examples: CORBA, DCOM, E-Mail

4

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
7

Software &
Engineering
Architecture

ABC of a Service

• A Service (Endpoint) contains 3 ingredients:
• A: An Address that tells where the service resides

• B: A Binding that tells how to reach the service regarding protocols

• C: A contract that defines what the service provides in terms of operations

Service

CBA

CBA

Client

ABC

Address
Where?

Contract
What?

Binding
How?

Endpoint

CBA

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
8

Software &
Engineering
Architecture

Best Practices

• Extension Interface Pattern:
• Problem: how to prevent interface bloating

• Solution: Group different responsibilities/roles in different
interfaces. Consider to introduce navigation functionality.

• Design by Contract (Contract First):
• Problem: Preventing implementation dependencies

• Solution: When designing top-down rely on a contract-first
approach

• Main Benefit: Role-Based, implicit interface design

• Consider Service and Operation Contracts (see WCF aka
Indigo):

• Service Contract (~ WSDL:PortType), Operation Contract
(~WSDL:Operation)

Role-Based
Interface1

service_1()

Role-Based
Interface2

service_2()

Implementation

svc_1_impl()
svc_2_impl()

5

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
9

Software &
Engineering
Architecture

Best Practices (cont‘d)

• Implementation-First
• Problem: How to integrate existing functionality

• Solution:

• If implementation already existing figure out
interfaces

• If necessary, refactor and adapt legacy solution

• Integrate service-oriented using existing interfaces

• Design and Implementation Issues:

• Analyse kind of adaptation:

• Is navigability bi-directional?

• Are data types used compatible with SOA approach or
are there further encapsulation layers necessary?

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
10

Software &
Engineering
Architecture

Message Exchange

• Communication Paradigm:
Asynchronous Message Exchange

• Stateless: no state preserved
across message exchanges

• Message paths routed not fixed
• Binding can be delayed instead of

being fixed
• Intermediaries might be involved
• Service Contract defines order of

message exchange
• This approach can be used as a

base for more advanced
communication styles (eventing,
publish/subscribe, multicast)

Queue
store
forward
remove

Sender

Receiver

Message

Queue
store
forward
remove

Message API

Message API

<<write>>

<<read>>

<<send>>

<<recv>>

<<route>>

Using Queues often not appropriate
for embedded systems. You may
leave them out!

B18

Slide 10

B18 Mention that queues are optional!
Buschmann_F; 14.09.2005

6

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
11

Software &
Engineering
Architecture

Broker Pattern: Synchronous Operation

• Simulating Synchronous Communication
possible by using

• tokens to correlate
different messages

• proxies to shield
client and server
from the asynchronous
message
protocol

Client

Proxy
(Recorder) Queue Proxy

(Player)

Server

1. method()

2. enqueue 3. dequeue

4. method() 5. result

6. enqueue7. dequeue

8. return

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
12

Software &
Engineering
Architecture

Best Practices

• Think asynchronous, message-oriented and document-centric
• Problem: Developers are used to synchronous communication style

• Solution: Even if synchronous layer is available make developers think in
asynchronous message exchange

• Thus, a client does not call a service operation. It „send a document to a
service“ and may or may not obtain an answer

• Example: Event-driven scenarios such as control systems, some business
systems, network management do not work with synchronous RPCs

7

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
13

Software &
Engineering
Architecture

Messages and Documents

• Each message transports a document

• A document must provide
• mandatory content

• optional context (e.g., QoS info)

• Sender and Receiver must agree on
document content

• Either by negotiating document structure and
semantics individually

• Or by relying on a predefined specification

• Documents can be binary or text-based

• Examples: TCP, IIOP, SOAP, MoM, E-Mail,
Snail Mail

Body [
Service = GetWeather
Zip=80469
Country=DE

] Body

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
14

Software &
Engineering
Architecture

Best Practices

• Consider Message- and Data Contract
• Message Contract: what‘s in the header and what‘s in the envelope (~

WSDL:Message)

• Data Contract (~XSD)

• Plan for Out-Of-The-Band Functionality/Policies
• For Out-Of-the-Band Information design headers and interceptors

Client Service

Be

Be

Bindings Insert
Claims in Messages

Behaviors
Implement Security

Gates

CBA

CBA

CBA

ABC

8

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
15

Software &
Engineering
Architecture

Best Practices (cont‘d)

• Define message-exchange patterns to use:
• 1:1 Communication:

• Oneway

• Callback

• Request/reply

• n:m Communication

• This depends on domain: e.g. Event driven
communication uses n:m style

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
16

Software &
Engineering
Architecture

SOA Processes

• We get the
SOAdvantage
not by isolated
invocation of
single services

• But by the
orchestration
and composition
of services to processes

• Using a Domain Specific Language (DSL) a
process description might be compiled into a
service of its own

9

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
17

Software &
Engineering
Architecture

Best Practices

• Business First Approach:
• Derive functional services from your business case / domain.

Classify services, e.g. Entity/Resource services, Infrastructure
Services, Session Services. Session Services are the entry
point. No direct access to entities or other
implemeentation details using services!!!!

• If existing components are to be integrated design service
facades

• Derive work flows from use cases. If necessary introduce
specific workflow DSL or use BPEL

• Introduce strategic views: security domains, business domains,
management domains, error handling domains

• Add views for operational qualities: e.g., fault
tolerance/scalability clusters. Decide which use cases have
specific requirements such as transaction support

• Developmental qualities: Use Commonality/Variability Analysis
to identity change cases and use rules engines to support
variability

• Build service mocks to test your system but always test against
real services if possible

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
18

Software &
Engineering
Architecture

Beyond the Basics – The Missing Pieces

• In contrast to common belief,
there is more to SOA than
just using „low-end“
protocols such as SOAP,
WSDL and UDDI

• We need complementary
technologies for

• Semantic Integration

• Quality of Service

• Structural Integrity

• ... name your own

10

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
19

Software &
Engineering
Architecture

Semantic Integration (1)

• Here is a service interface

• It is only defined as a soup
of structural information

• Now, guess, what the
service actually provides to
you?

Service S4711 {
int op123(String)
String op42(int)
void op13(int)

}

S4711: CustumerService
op123 => create Customer
op42 => get Customer
op13 => remove Customer
Security Precondition:
callerIs(Accountant)

• Semantics specifies the
meaning

• Annotations are used to
associate structure with
semantics

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
20

Software &
Engineering
Architecture

Semantic Integration (2)

• Semantic Integration is also
useful for

• providing automatic service
composition

• on demand service interface
adaptation based on ontologies

• location of services using ontologies
instead of full text searches

• supporting of Quality of Service and
SLAs by provisioning of meta
information

11

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
21

Software &
Engineering
Architecture

Decentralized Approach

• In the current approach the
discovery of services

• Either, is not necessary
because all client/service
connections can be statically
configured

• Or, uses a central repository
where all services are
registered

• In the future
• Dynamic discovery using

Peer-To-Peer and PnP
technologies might be a
better strategy at least for
some parts of the system

• A compromise might be to
use a hybrid approach:
decentralized access where
possible and centralized
access where necessary

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
22

Software &
Engineering
Architecture

Location Pattern

• Best Practices:
• For clients provide indirection

layer to hide details of how
locations are found

• If decentralized approach is
required, use Lookup/Location
patterns

Locator

findLocSvc

Service

provideSvc

Client

useSvc

Locator

findLocSvc

LocationSvc

locateSvc
registerSvc

Location

<<query>>

<<locateSvc>>

<<registerSvc>>

0..1

<<invoke>>

Locator

searchSvc

12

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
23

Software &
Engineering
Architecture

Structural Integrity
• Today, reality provides a mixture of different paradigms:

• Common Approach: SOA for external integration and other technologies
such as OO middleware/componentware for internal integration

• Liability:
• Architectural Drift is inevitable. Systems become brittle and instable

• Architects and developers must now deal with standard platforms AND with SOA

• Integration often becomes a nightmare because of sheer complexity and size

Java CONTAINER .NET CONTAINER

Component X Component Y

Service 1 Local Object

Client

1. Invoke service

2. Invoke component
3. Invoke component

4. Invoke entity

Service 2

5. Invoke service5. Result

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
24

Software &
Engineering
Architecture

Service Components and Enterprise Service Bus

• Basic Idea (One Size Fits All):
• Shield developers from technology and enable developers to use the SOA

paradigm for internal and external integration

• Different technologies can be plugged-in transparently (Open/Close
Principle)

• Best practice: Use ESB/Container pattern

• This implementation should be provided by infrstructure
provider

• Examples: Microsoft WCF (Windows Communication
Foundation), IBM Websphere

13

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
25

Software &
Engineering
Architecture

Stateful Services

• In the pure SOA approach clients, services and
connections are stateless.

• Stateless is good because it fosters scalability and flexibility
• Stateless is evil when we need to manage sessions (i.e.,

correlated invocations) or when service affinity is important

• Different options
• Implementing Sessions:

• State is always transferred between peers. Network load may
become an issue!

• Send a token between peers and let one of the peers (either client
or service) maintain state in a store using the token as primary key

• Guaranteeing affinity
• Include context information in messages that tell infrastructure how

to dispatch the message

• Could be done manually on application layer (bad idea due to
incompatibility) or on infrastructure layer (good because hidden
from developers)

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
26

Software &
Engineering
Architecture

Quality Related Principles and Patterns: Service
Design (1)

• Each client call to a service is potentially
a remote call that is significantly slower
than a local method call, due to
networking overhead, latency, and jitter

• Each service call can involve different
activities with hidden costs (security,
activation / passivation, …)

• Naïve service interface design and use
can cause significant performance and
scalability penalties.

14

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
27

Software &
Engineering
Architecture

Quality Related Principles and Patterns: Service
Design (2)

Example for a service interface that is not recommended
because the client needs to make many fine-grained calls
execute the service:

service MyFlightBookingService {
FlightList searchFlight(String departureAirport,

String destinationAirport,
...);

void selectFlight(String flightId);
void setTravellerFirstName(String firstName);
void setTravellerLastName(String lastName);
void setPersonId(String id);
...

}

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
28

Software &
Engineering
Architecture

Quality Related Principles and Patterns: Service
Design (3)
• Only realize course-grained, self-contained business processes

as services

• Let services manage their workflow
via Session Facades that use local
components for further processing

• Use Transfer Objects and
Value List Handlers to increase the
amount of data passed between clients
and a service

• Never expose service attributes via
getter/setter methods

• Loose coupling is key: let clients access a service via a Service
Locator and access its functionality via Business Delegates.
Access persistent data via Data Access Objects

15

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
29

Software &
Engineering
Architecture

Session Facade (1)
• Encapsulates the complexity of interactions between the

business objects
• Provides a uniform coarse-grained service access layer to

clients
remote API local API

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
30

Software &
Engineering
Architecture

Session Facade (2)

16

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
31

Software &
Engineering
Architecture

Transfer Object

e.g. SessionFacade

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
32

Software &
Engineering
Architecture

Large Result Lists

• Clients might want perform searches or
obtain large result lists from services

• Search methods have a huge
performance overhead when used to
perform large searches

• Typically, a client uses the results of a
query for read-only purposes, such as
displaying the result list.

• Often, the client views only the first few
matching records, and then may discard
the remaining records and attempt a
new query

17

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
33

Software &
Engineering
Architecture

Value List Handler

Use a Value List Handler (aka Batch Method) to search, cache
the results, and allow the client to traverse and select items
from the results:

stateful SessionFacade

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
34

Software &
Engineering
Architecture

caches the results

18

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
35

Software &
Engineering
Architecture

Loose Coupling

Client should not interact directly with a
provided service interface:

• API changes affect client code

• tight coupling to all—even unused
service methods—decreases system
flexibility

• client must handle communication
details

• the client is not transparent to
discovering services

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
36

Software &
Engineering
Architecture

Use one or more role-based Business Delegates (Extension
Interfaces) to reduce coupling between clients and services. Each
Business Delegate hides underlying implementation details of a
remote service, such as lookup, dependencies to the provided
service interface, and remote communication details.

Often, business delegates are developed by the service developers
and provided to the client developers.

Business Delegate

remote APIlocal

19

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
37

Software &
Engineering
Architecture

Use a Service Locator object to abstract all repository usage or service discovery
and to hide the complexities of initial creation.

.

Service Locator / Lookup Service

e.g. Business
Delegate

reduce expensive
directory lookups

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
38

Software &
Engineering
Architecture

Data Access

• Most enterprise applications use relational
database management.

• Date can reside in many types of repository:
• mainframe systems
• Lightweight Directory Access Protocol

(LDAP) repositories
• flat files
• object-oriented databases
• business to business systems

• Services may access a data store or EIS
System to manage persistent data

20

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
39

Software &
Engineering
Architecture

Data Access Object (1)

Use data access objects to encapsulate access to the data
source and to achieve portability:

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
40

Software &
Engineering
Architecture

Data Access Object (2)

21

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
41

Software &
Engineering
Architecture

Proposed Service Architecture

uses

lookup/create

remote API local APIlocal

C
O

R
P

O
R

A
T

E

T
E

C
H

N
O

L O
 G

 Y

© Siemens AG, CT SE 2, Michael Stal, 23.11.05
42

Software &
Engineering
Architecture

Summary - SOA from 10000 feet

• SOA has a strict business-oriented view: services are self-
contained and provide a business value.

• Loose coupling is the SOA mantra!

• Architecture is key: many
patterns support SOA!

• Thinking SOA is not trivial …
• asynchronous communication, asynchronous service implementations.

• inversion of control, dependency injection

• strict design by contract

• operational qualities

… but if done consequently and disciplined helps building
platforms and product-lines for flexible, high-quality systems.

• SOA is an additional mindset for building software, not a
replacement of existing approaches: components, objects, and
other paradigms still have their place.

